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The multicellular flow between two vertical parallel plates is numerically simulated 
using a time-splitting pseudospectral method. The steady flow of air, and the time- 
periodic flow of oil (Prandtl numbers of 0.71 and 1000, respectively) are investigated 
and descriptions of these flows using both physical and spectral approaches are 
presented. The details of the time dependency of the flow and temperature fields of 
oil are shown, and the dynamics of the process is discussed. The spectral transfer of 
energy among the axial modes comprising the flow is explored. The spectra of kinetic 
energy and thermal variance for air are found to be smooth and viscously dominated. 
Similar spectra for oil are bumpier, and the dynamics of the time-dependent flow are 
determined to be confined to the lower end of the spectrum alone. 

The three-dimensional linear stability of the multicellular flow of air is 
parametrically studied. The domain of stable two-dimensional cellular motion was 
found to be constrained by the Eckhaus instability and by two types of monotone 
instability. The two-dimensional multicellular flow is unstable above a Grashof 
number of about 8550 (with the critical Grashof number for the base flow being 
8037). Therefore the flow of air in a sufficiently tall vertical enclosure should be 
considered to be three-dimensional for most practical applications. 

1. Introduction 
The subject matter of this paper is natural convection in a tall vertical enclosure, 

the convective flow being driven by a temperature difference between isothermal 
sidewalls. We are only concerned with the limit in which the two aspect ratios of the 
cavity tend to infinity. In this limit the thermal conditions at  the ends are 
immaterial, for they do not influence the flow in the main part of the cavity. The 
imposed temperature difference leads to a recirculating flow with upward flow near 
the hot wall and downward flow next to the cold one. If the temperature differences 
are small, then the flow away from the ends is a parallel flow, the vertical velocity 
of which varies as a cubic across the cavity. For such a flow convection heat transfer 
is absent and temperature across the gap is a linear function of distance. Thus heat 
is transferred across the enclosure solely by conduction, and for this reason the 
resulting flow is said to belong to the conduction regime. 

By observations and measurements Vest & Arpaci (1969) found that for air the 
parallel shear flow just described becomes unstable at  a Grashof number, Gr, of about 
8OO0, and that the instability sets in as a set of steady two-dimensional cells with 
axes transverse to the flow direction. Theoretical predictions show this to be true for 
all fluids for which the Prandtl number, Pr,  is less than 12.7 (Gershuni & 
Zhukhovitskii 1976, p. 276 and Korpela, Gozum & Baxi 1973). Further affirmation of 
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the instability is given by the interferometric studies of Schinkel (1980) and heat 
transfer measurements of Hollands & Konicek (1973). 

Direct simulations of the multicellular flow after the onset of instability have been 
carried out, with the aid of a computer, by Lee & Korpela (1983) and Lauriat & 
Desrayaud (1985a,b), among others. In  their researches the aspect ratio of the cavity 
was taken to be finite, and their goal was to elucidate the influence of the aspect ratio 
on the structure of the flow and the resulting heat transfer. Except for the recent 
study by Nagata & Busse (1983), the only study that takes advantage of the 
property that in the vertical direction the multicellular flow in a very tall cavity is 
spatially periodic, is by Gershuni & Zhukhovitskii (1976, pp. 301-304). 

One aim of the present work is to study more fully the structure of the 
multicellular flow by analysing the flow and thermal fields in a typical cell as the 
nonlinear secondary flow develops. The advantage gained by restricting the analysis 
to a single cell is high spatial resolution. In addition, because the flow domain is 
spatially periodic, spectral methods, as opposed to finite-difference or finite-element 
techniques, may be used for the calculations. This further increases the accuracy of 
the solutions. The drawback of restricting the domain to one cell is that the 
wavelength must be prescribed a t  the outset, and the dependency of the wavelength 
on the amplitude of convection cannot be established in an infinite domain, even 
though the correspondence between t.he two for a given supercritical flow can be 
found. 

A further aim of the present study is to investigate the stability of the multicellular 
flow. Much of the previous work on stability of secondary flows has been carried out 
on Rayleigh-Be'nard convection and Taylor-Couette flow. The work in convection 
has been systematically studied by Busse and his coworkers. They have identified a 
number of secondary instability mechanisms and studied the properties of the stable 
flows arising from the secondary instability. Some of these instabilities and their 
main features are summarized in Busse (1981) and in Bolton, Busse & Clever (1986). 
Briefly, secondary instabilities can be classified according to whether they change 
only the wavelength of the secondary flow, or whether they change its pattern. Each 
type of instability is distinguished by its allowable range of wavelengths, its inherent 
two- or three-dimensionality, its symmetry properties, and its visual appearance in 
experiments. 

The secondary instability for a flow in a vertical cavity has been studied by Nagata 
& Busse (1983) in the limit of Pr = 0. Their results are important for the present 
study for two reasons. First, our formulation and numerical technique differ from 
theirs, and therefore our method can be validated by comparing our results at  
Pr = 0 to theirs. Second, their results provide a guide for what can be expected if 
qualitative similarities exist between the case of a vanishing Prandtl number and one 
for Pr = 0.71, corresponding to air, even if new mechanisms are important for Pr = 
0.71. 

Nagata & Busse-found three kinds of instability mechanisms to be present at  
slightly supercritical Grashof numbers. One kind is the Eckhaus instability (also 
known as sideband or Benjamin-Feir instability). Its stability boundary defines the 
domain of the stable two-dimensional convection cells. The second kind is a 
monotone instability, so called because its most criticial eigenvalue is real. It is 
responsible for transition to tertiary three-dimensional motion. The third mode is an 
oscillatory three-dimensional instability. I ts  critical eigenvalue appears as a complex- 
conjugate pair, so the flow is a time-dependent tertiary motion of standing waves. 
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FIGURE 1. Geometry and base velocity profile for an infinite vertical enclosure. 

The spatial form of this instability does not lead to a change in the wavelength of the 
secondary flow. 

2. Formulation 
The flow in the cavity, (shown in figure 1) with the right wall heated and the left 

one cooled, is assumed to be governed by the Boussinesq form of the Navier-Stokes 
equations, which for a two-dimensional flow are 

= u x  o-V7r+Gr-1(V2u+T&u), 
a v  
at 
- 

= - V . ( u T )  + (GrPr)- lV2T,  
aT - 
at 

v.u = 0. (3) 

The above equations have been put into a non-dimensional form by dividing lengths 
by the cavity width L ,  time by L2/(Grv) ,  temperatures by AT = q-3, velocities by 
U and pressure by pu2. The characteristic velocity is U = gaATL2/v,  obtained by 
balancing the viscous shear force with the buoyant force. In the above definitions p 
is the volumetric coefficient of thermal expansion, g is the gravitational acceleration 
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and v is the kinematic viscosity. The Grashof number is given by Gr = UL/v ,  and 
Pr = V / K ,  in which K is the thermal diffusivity, is the Prandtl number. The vorticity 
and total head are defined by the equations 

W ~ V X V ,  14) 

7r = p + ; v . v .  (5 )  

These variables represent total flow quantities. When they are decomposed into a 
base flow and a secondary flow quantity, the secondary flow variables are designated 
using a subscript s, and the base flow quantities with a subscript b. 

The boundary conditions for the velocities are the no-slip conditions at  the walls 
and periodicity conditions over a cell in the y-direction. The temperature in non- 
dimensional variables has a value of -4  on the left wall and ; on the right 
wall. 

It turns out to be advantageous to use the secondary flow quantities as the 
unknowns and decompose the total flow for each of the variables as 

(6) 

Wb = t(ix-x.”), (7) 

Tb = X. (8) 

q(2, y? z? t ,  = QS(~, y, x ,  t ,  +qb(Z)*  

The base flow is given by the equations 

When the equations governing the base flow are subtracted from the set (1)-(3) one 
obtains 

= (0, + vb) x (0, + wb)-vns + Cr-1(V2v, + 2 kV), - av, 
at (9) 

- _  aTs - -V. (v, 3)  + (CrPr)-’V2T,, 
at 

v-v, = 0, 

with homogeneous boundary conditions 

v, = T, = 0 at x = -4 and$, (12) 

7rs P s + ~ ~ v ~ + V b ( X ) ~ ~ [ v s + V b ( X ) I ~  (13) 

and periodicity conditions in y. The new pressure head 7r, in (9) is now defined by 

3. Numerical method 
To resolve the spatial structure of the flow, the set of equations (9)-(12) is solved 

by a pseudospectral method (Gottlieb & Orszag, 1977) and the evolution of the 
solution in time is calculated with a three-step time-splitting method. The spectral 
approximation to the governing equations is obtained by expressing the flow 
variables as the double sum 

(14) 
K N  

a x ,  y, t )  = Re [ x x &(n, k, t )  T,(4 e 2 . i q  7 

k - - K + l I t = O  

in which Re denotes the real part of the expression which follows. This representation 
uses a spectral sum of Chebyshev polynomials, T,(x), in x and a Fourier expansion 
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in y. The parameter h is the non-dimensional wavelength of the multicellular 
structure. 

The time-splitting method used is due to  Marcus ( 1 9 8 4 ~ ) .  It is fast and accurate and 
does not suffer from time-splitting errors. Briefly, the method employs three time 
steps. I n  the first step the nonlinear v x w term and the buoyant term in (9 )  are used 
to  advance the solution in time by an explicit Adams-Bashforth differencing. The 
second step gives the contribution of the pressure and it is solved implicitly by 
imposing the continuity equation (1 1) a t  this stage. In the last step the influence of 
the viscous term is taken care of implicitly. A time-splitting error would be 
introduced in the second step if the boundary conditions were not properly 
accounted for. Marcus eliminates these errors by introducing a correction which 
forces the results to satisfy the governing equations and all boundary conditions 
properly. In addition, he makes efficient use of numerical Green functions 
(capacitance matrix) in a pre-processing stage and in this way considerably 
accelerates the computations. Detailed discussion, derivation, and application of the 
method for circular Couette flow can be found in the original papers of Marcus 
(1984a, b) .  The thermal energy balance is advanced in time in two steps. The first is 
an Adams-Bashforth step which accounts for the nonlinear convective terms. This 
is followed by an implicit step for the diffusion term. 

As this study involves details of the first and second bifurcations of the base flow, 
numerical accuracy is of great importance. The following section lists several 
numerical tests which are an integral part of the analysis. 

The computer program written for the purpose of simulating the flow was tested 
by calculating the decay and growth rates of small disturbances in subcritical or 
slightly supercritical flows, respectively. I n  addition, for the conditions in which the 
instability sets in as a travelling wave, the wave speed was determined. The results 
so obtained were compared with those separately calculated by linear stability 
theory. A description of how the linear stability problem of the base flow is solved 
in a similar problem by pseudospectral techniques is given in Kuo (1986). For time 
steps typical for our study ( -  O . l ) ,  the errors in both growth rates and wave speeds 
were less than 0.1 YO with 17 modes in x. The errors become still smaller when more 
terms in x and smaller time steps are used. 

To verify that the nonlinear terms are accurately calculated the normalized 
divergence of the velocity was computed. It was found to be always o ( ~ O - ~ )  a t  each 
collocation point with 17 x 16 modes in x and y, respectively, and o( lop9) for 33 x 32 
modes. By taking the curl of the Navier-Stokes equations the normalized quantity 
Y ,  defined similarly to Marcus ( 1 9 8 4 ~ )  as 

Y V X  [ - ( v , * V ) V , + G ~ - ’ ( V ~ V , + ~ ~ ~ ) ] ,  (15) 

should approach zero a t  steady state. It was calculated to be less than 0(10-~) when 
steady state was reached. 

Another test for consistency is to  calculate the heat transfer across each vertical 
plane passing through every horizontal collocation point. At steady state the heat 
transferred through the walls by conduction alone must be equal to the sum of the 
conduction and convection at each vertical plane specified by the collocation points. 
Expressed as an averaged Nusselt number the heat transfer is 
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where = 1 for the pure conduction. The steady state was determined to have been 
reached when the fractional kinetic energy between two time steps changes by less 
than among all vertical planes 
(for 33 collocation points in x) is less than low6. 

A sensitive test for the overall accuracy is to compute the integrated kinetic energy 
production and dissipation in the secondary flow. The kinetic energy balance is given 

At this condition the maximum deviation in 

by 

@:5[l($:+$vi)dydx = - r.5 us v, (!!) dy dx + Gr-l r'5 v, T,  dy dx 
-0.5 0 -0.5 0 

-Gr-l r.5 p [ rzy + ($$y + @y + er] dy dx. (17) 
-0 .5  0 

The first term on the right-hand side of this equation represents energy transfer from 
the mean flow by the action of Reynolds stress ; the second term is the work done by 
buoyant forces and, if positive, serves also to increase the kinetic energy. The third 
term is the negative definite viscous dissipation. 

The equation for the variance of the temperature is similarly expressed as 

The first term on the right represents the temperature variance created by the 
interaction of the mean temperature gradient with the convective heat transfer. The 
second term accounts for the effect of diffusion in smoothing out temperature 
distortions. 

At steady state, production and dissipation of kinetic energy and thermal variance 
must be equal. Using the same steady state criterion as above and 33 x 32 modes to 
resolve the flow, the difference between the production and dissipation was always 
a t  most of O(lO-') in each of the equations. 

4. Simulations of the secondary flow 
In this section the flow and thermal structure of two states are presented. The 

states are representative of slightly and moderately supercritical flows for small and 
large Prandtl number. The parameters for the first state are Pr = 0.71 (air), Gr = 

8500 (the critical Urashof number being, Gr, = 8037), and a = 2.8, where a = 2n/h 
is the wavenumber of a multicellular flow. The second state is for an oil with Pr = 
1000, Gr = 375 (Gr, = 276), and 01 = 2.4. The flow in this state is characterized by 
two waves travelling in opposite directions giving rise to a steady periodic flow. 

Based on results from the stability analyses of the secondary flow (this is discussed 
in $5) the state for air was chosen to assure a stable two-dimensional flow a t  the 
selected conditions. No stability calculations for the time-periodic flow of the oil have 
been carried out as a part of this study. The state for it then is a somewhat arbitrarily 
chosen moderately supercritical state. It is not expected that global results, 
especially with regard to the Prandtl-number dependency, would be greatly altered 
if a t  this state for oil the flow were to turn out to  be three-dimensional. 
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I n  the following two sections, physical and spectral descriptions of the flow are 
presented, where the ability to examine the flow from both aspects adds to the 
understanding of the transport phenomena. 

4.1. Physical description of the $ow 
For a low-Prandtl-number fluid the stationary multicellular flow, which results from 
a shear-type instability of the base velocity profile, is shown in the contour plots in 
the figure 2. The plots in figures 2(a)  and 2 ( d )  correspond to the eigenfunction 
belonging to the eigenvalue with the largest positive growth rate a t  this state. Even 
if this flow cannot be seen in nature, comparing it to a state obtained by solving the 
nonlinear equations serves to illustrate the differences between the two flows. The 
solid lines in figure 2 (a) represent a motion of counterclockwise circulation for which 
the stream function is positive. The dashed lines represent negative values for the 
stream function and clockwise rotation. As is evident from figure 2 (a), the secondary 
motion sets in as two stationary counter-rotating cells of the same strength. The cells 
are inclined with respect to the horizontal in such a way that their upward slope is 
towards the cold wall. 

In  figure 2 are also shown the secondary and total fields of the stream function and 
temperature when the nonlinear terms are retained. Only slight qualitative 
differences exist between the secondary and the linear fields, because the dominant 
y-Fourier mode for this slightly supercritical flow is still the first mode. It is also 
noted that the distinction between the secondary and total fields is appropriate only 
for an infinitely long cavity. This separation aids in the study of how the non-linear 
flow develops, but is impossible to perform in a finite domain in a similar manner. 

Turning to the flow of a large-Prandtl-number fluid, we note that the instability 
sets in as two waves travelling in opposite directions in the two halves of the cavity. 
These waves are the kind that would arise from critical layers. Since the wave speed 
is greater than the maximum base flow velocity no true critical layers can appear in 
the flow. This was pointed out by Gill & Davey (1969) who considered the stability 
of a ‘buoyancy layer’ (Prandtl 1953), in which the wave speed is also greater than 
the maximum base flow velocity. They show, as we have also found, that moderately 
thin layers exist in the flow, in which the conversion of potential energy associated 
with the buoyancy field to disturbance kinetic energy takes place, and that the 
kinetic energy of the disturbance is actually slowly transferred to the mean flow 
rather than vice versa, as is usually the case. These results are consistent also with 
the findings of Bergholz (1978). 

The flow a t  Pr = 1000 is periodic in time. In figure 3 two states are shown a t  
different times during the cyclic variation of the flow. It is noted that, though the 
secondary fields are shown here, the plots reflect only the fluctuating components of 
the flow, as the mean flow was found to be identical to the base flow at any instant 
in time, i.e. the average component of the supercritical flow is identically zero (this 
is not the case for the flow of air). In  the top set of figures ( u 4 )  the kinetic energy 
reaches its maximum value during the cycle; and on the bottom set of figures (e-h) 
its minimum. The stream pattern at  the maximum of kinetic energy (figure 3a) 
consists of two counter-rotating convection cells of about equal size and strength. At 
the minimum of kinetic energy (figure 3e)  a weaker and less coherent pattern is 
shown. The proximity of streamlines in this figure should not be taken as an 
indication of strong flow, because the maximum value of the stream function is only 
0.2 x and the kinetic energy has the value 0.6 x lo-*. The corresponding 
numbers for the top figure are 0.2 x and 0.1 x 
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FIGURE 2.  The steady flow of air (Pr = 0.71, Gr = 8500, a = 2.8) .  I n  each figure the cold wall is on 
the left and the gravity vector points downwards. (a )  linear eigenfunction-stream function, ( b )  
nonlinear secondary stream function, (c) nonlinear total stream function, ( d )  linear eigen- 
function-temperature, ( e )  nonlinear secondary temperature, (f) nonlinear total temperature. 

The secondary temperature field, shown in figures 3 ( b )  and 3(f), is seen to be 
convected with the travelling waves in such a way that the distinct temperature 
extrema (of the same sign) are either out of phase (in b ) ,  or in phase (inf). That is, 
whereas in (b )  the temperature extrema have opposite signs in a horizontal traverse 
across the slot, in (f) temperature islands of the same sign are side by side. The 
maximum and minimum of the secondary thermal field are nearly equal in absolute 
value, both having the value of about 0.1 in the non-dimensional units in which the 
total temperature difference between the walls is unity. By comparing the stream 
patterns to the thermal field one notes that strong convection cells correspond to 
temperature fields that are out of phase, and that weak cellular motion corresponds 
to thermal fields which are in phase. When the kinetic energy reaches its maximum 
value, the ‘cat’s eye’ pattern appears in the total flow (figure 3 c ) .  At the state of 
minimum kinetic energy the secondary flow is so weak that it has no noticeable 
influence on the base flow (figure 3g). 

Figure 4 shows the cyclic variation of both the secondary kinetic energy and the 
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FIGURE 3. The time-periodic flow of oil (Pr = 1000, Gr = 375, a = 2.4). The top figures ( a d )  refer 
to the maximum kinetic energy state and the bottom figures (e-h) to the minimum state. (a ,e)  
secondary stream function, (b ,  f) secondary temperature, (c,g) total stream function, (d,  h) 
secondary kinetic energy production. 

thermal variance. The period is 320 non-dimensional time units (about 4.0 s for, say, 
engine oil a t  a mean temperature of 60 "C). As the energy is being transferred to and 
from the thermal field, the thermal variance cycles in such a way that it is maximum 
when kinetic energy is minimum and vice versa. 

In  an attempt to  understand why the out of phase thermal fields are conducive for 
production of secondary kinetic energy and hence strong convection cells, the local 
production terms in (17)  are plotted in figures 3 (d )  and 3 ( h ) .  There are two possible 
sources for the secondary kinetic energy, the first being transfer from the mean flow 
via Reynolds stresses. For large Prandtl numbers this transfer is insignificant, being 
only on the order of 10-l0. Incidently, i t  is also negative, so that energy is transferred 
from the disturbance to the base flow. The dominant production mechanism is the 
conversion of the potential energy from the buoyancy field, the local production rate 
being expressed as TI, T,. This term is positive during that part of the cycle in which 
the thermal fields are out of phase, in the same way as the vertical velocity field 
is in the two halves of the cavity. This takes place when the streamlines show a 
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FIGURE 4. Time variations of (a) secondary thermal variance, (b )  secondary kinetic energy 
(-) and its time derivative ( - - - - )  (Pr = 1000, Cr = 375, CL. = 2.4). 

regular cellular pattern. The large production rate leads to a maximum of kinetic 
energy during this part of the cycle. The integrated-value of buoyant production is 
0.3 x 

When inertia and dissipation effects are included, the entire cycle may be described 
as follows. At the kinetic energy maximum, production is also a maximum owing to 
the coexistence of both strong production peaks across the cavity, as shown in figure 
3 ( d ) .  However, since the cells are strong, dissipation is also large. Were the 
production to increase even further, so would the kinetic energy, provided that 
dissipation is smaller than production. This is not the case though since, as thermal 
cells of opposite sign start to move away from one another, production begins to 
decrease. Since dissipation is related to  the level of the kinetic energy of the cells (i.e. 
stronger cells dissipate more than weaker cells), the net balance becomes negative as 
the kinetic energy maximum is passed. For this reason the kinetic energy begins to 
decrease. This scenario can also be seen in the switch of the numerical sign of the time 
rate of change of kinetic energy in figure 4 a t  the time when the balance between 
production and dissipation becomes negative. 

As the flow in the cells becomes weaker and the thermal islands of opposite sign 
move further away, the level of buoyant production falls even faster than the 

whereas i t  is only 0.5 x when the thermal fields are in phase. 
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dissipation does, and the rate of the kinetic energy decrease becomes larger. At the 
point of minimum kinetic energy the cells are so weak that they can no longer span 
the entire horizontal extent of the cavity, and two weak counter-rotating cells appear 
in place of each of the strong cells at the kinetic energy maximum (figure 3 e ) .  
However, a t  that point thermal cells of opposite sign again start to move towards one 
another and thereby increase the production term. Again, as dissipation is related to 
the level of kinetic energy of the flow, it lags behind and a net positive balance is 
formed when the time rate of change of kinetic energy becomes positive. 

In summary, in large-Prandtl-number flows the temperature fluctuations 
originating near the critical layers are convected in opposite directions on opposite 
sides of the cavity, and in doing so contribute during part of the cycle to a strong 
buoyant production of kinetic energy. 

The thermal variance changes relatively little in magnitude during the cycle and, 
as seen from figure 4, it  is out of phase with the kinetic energy oscillation. The reason 
for the small changes is again traced to the passive character of the thermal field for 
a large-Prandtl-number fluid. 

The wave speed for this time-periodic flow is computed to be 7.363. This is slightly 
lower than the value of 7.585 obtained from the independently performed stability 
analysis for the same supercritical parameters. Both are somewhat larger than the 
value 7.202 for the maximum base flow velocity. From previous studies, as well as 
from our own, we anticipate that linear theory would predict a wave speed of 
magnitude close to the maximum base flow velocity. What is noteworthy is that the 
linear and nonlinear values are so close. 

4.2. Spectral description of the flow 

The secondary flow field originates from an instability of a single spectral mode 
with a given periodicity in the y-direction. The higher harmonics gradually receive 
energy through nonlinear interactions and the nonlinear states of the flow can be 
considered to be a synthesis of the various spectral modes. To understand the 
dynamics of the spectrum one can compute the spectral balance equations for the 
kinetic energy (EK) and thermal variance (E,) and examine the contributions of 
the various terms in these equations. I n  doing so i t  is important to remember that the 
flow being analysed here is a laminar flow. Thus, whereas the terminology is similar 
to that used in turbulence research, the modes are not to be regarded as physical 
eddies. Rather, they are modes defined by the one-dimensional spectra of a two- 
dimensional flow. 

The kinetic energy of the mode with a wavenumber k (the k-mode for short) is 
defined by 

where So, is the Kronecker delta. That is, the magnitude of the Fourier coefficient of 
the velocity gives a measure of the spectra kinetic energy. Similarly, thermal variance 
of the k-mode is defined by 

I r o . 5  

ET(k) ___ J (T ( z ,  k)I2dz. 
-0 .5  

The evolution equation for the kinetic energy of the k-mode is obtained by a finite 
Fourier transform of the Navier-Stokes equation and taking the inner product 
between the transformed equation and the complex conjugate of the transformed 
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velocity. Integrating the resulting equation across the flow field yields equations for 
the total and secondary fields, respectively; 

-Lr'5 v(x, - k )  T(x, k) dx} 
Gr -0.5 

The first term on the right in both equations is a spectral convolution sum over all 
k' modes, and is the result of a nonlinear triad intereaction in which energy is being 
transferred among modes with harmonic numbers k', T k - k', i- k. The second term 
in (22) represents a direct transfer of energy from the base flow into the k-mode by' 
the action of Reynolds stresses or vice versa. This term is absent in the balance of 
kinetic energy for the total flow. The next term in both equations is the buoyant 
conversion term, in which the k-mode either receives energy directly from the 
thermal field or gives it up. The last term is a negative definite dissipation term. 

The appearance of the buoyant conversion term in the equation has consequences 
for the overall structure of the EK and the BT spectra. This term is absent in 
isothermal flows, or in a convective flow of vanishing Prandtl number. I n  such cases 
the only mechanism for energy transfer to the higher modes is through the triad 
term. With the buoyant term present higher modes can also be supplied energy 
directly from the thermal field. 

The thermal variance equation for the k-mode is obtained similarly by first taking 
the finite Fourier transform of the thermal energy balance and then multiplying it 
by the complex conjugate of the temperature of the k-mode. After integration in x 
the resulting equation is for the total and secondary fields, respectively : 
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FIGURE 5.  Spectra of kinetic energy and thermal variance for air (Pr = 0.71, Gr = 8500, a = 2.8). 

The first term on the right in both equations is a nonlinear triad interaction. The 
second term in (24) represents thermal variance production via the interaction of 
the convective flux of the k-mode with the base temperature gradient. For the total 
thermal variance equation this term is absent and is replaced by the production of 
the mean thermal variance at  the side-walls. The third term in both equations is the 
negative definite dissipation of thermal variance by conduction. 

4.2.1. Multicellular flow of air, Pr = 0.71 

Figure 5 shows the EK and ET spectra for air for a stable, two-dimensional, slightly 
supercritical state. Both spectra are relatively smooth and they can reasonably be 
approximated by 

In [EK(k) ,  E,(k)] - -2bk. 

By fitting a line through the discrete spectra, the resulting value of @ a t  this state is 
3.2. A similar calculation made a t  Gr = 12000 yields a value 1.79. Thus the slopes in 
figure 5 are milder for more supercritical flows. This is caused by the greater 
effectiveness of the triad transfer mechanism a t  the larger values of Gr. Based on 
these and two other calculations @ appears to scale as. 

(26) 

(25) 

@ - (Gr - Gr,):. 

Marcus (1984b), whom we follow also in the treatment of the spectra, has shown that 
the relation implied in (25) is consistent with the Navier-Stokes equation for 
Taylor-Couette flow, and he proposed that the reason the EK spectrum is smooth in 
a non-convective flow is that all but the largest mode must receive their energy 
through the nonlinear triad interaction term, and that this term is not associated 
intrinsically with any particular wavelength. The existence of a direct transfer of 
energy from the thermal field to a particular mode means that were a good 
correlation between w(z, -k) and T(z, k) to exist, a bump would appear in the 
spectrum. For this reason the E ,  spectra of convective flows might not be 
smooth. 

The expected behaviour of the EK spectrum for our convective flow is not present 
in the spectrum shown in figure 5.  The direct transfer from the thermal field is weak 
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and modes other than the first two dissipate more energy than they produce. The 
balance is brought in by the triad term, which dominates the spectrum for k > 1. The 
dominance of the triad interactions leads to a smooth E, spectrum and therefore for 
k > 1 the spectrum shows no distinct structure. 

To make these remarks plausible we define, in a manner similar to Marcus (19843) 
for Taylor-Couette flow, a local Kolmogorov wave number k,, in such a way that the 
local Grashof number based on k ,  is unity. The spectrum for wavenumbers larger 
than k, should then be dissipative. The Grashof number, using a characteristic scalar 
velocity w ( k K ) ,  then becomes 

(27) 
vU(kK) 'k - _ _ _ _  - 1. 

V 

The wavelength A, = h / k ,  corresponds to the Kolmogorov wavenumber k,, and 
v(kK) and h are dimensional quantities a t  present. The characteristic scale velocity 
v(k) can be defined in terms of the kinetic energy, E,(k)  as 

v ( k )  = [E,(k)]i, (28) 

which when substituted into (27) and the result put into a non-dimensional form 
gives the relat,ion 

Using the numerically computed spectrum (with interpolation between the discrete 
data), the Kolmogorov wavenumber becomes k, x 1.7. The spectrum of E ,  shown 
in figure 5 is therefore certainly dissipative for k 2 2. As will be shown, the absolute 
value of the ratio of production to dissipation is largest for k = 2 among all modes 
with k 2 2 and its magnitude is only 0.42. The same ratio for the k = 1 mode is 1.03. 
Therefore it is expected from these two values alone that production will equal 
dissipation somewhere between the two modes. The rest of the production spectrum 
decreascs exponentially as the wavenumber increases. Dissipation is also confined to 
the mean flow, €or i t  dissipates about 99.07 % of the total. 

The ET spectrum as shown in figure 5 is also smooth and parallel to the E K  
spectrum. Again, analysis shows that all modes except k = 1 are dissipative, as the 
ratio of production to dissipation for k = 1 is - 1.05 whereas for k = 2 it is only - 0.45, and even smaller for the higher modes. Therefore, the triad term in (23) and 
(24) dominates the ET spectrum, and is a cause of smoothness. It will be seen that this 
will not be true for a large-Prandtl-number flow. 

As an additional check on the accuracy of the simulations, the global EK and ET 
balances a t  steady state were calculated by summing the production and dissipation 
over all modes. The sum of the triad interaction terms in each equation must vanish 
because they represent a transfer of either E K  or ET among all modes. The total 
production of kinetic energy was computed to be 0.1575747 x lop6. The dissipation 
also equals this value to 7 significant digits. The production and dissipation for E ,  
were both 0.1686678 x This kind of accuracy gives us confidence that the 
physical phenomenon is faithfully simulated. 

In  the examination of the energetics of the linear stability problem, the 
decomposition of the flow into a base and secondary flow gives the transfer between 
these fields. For t8he k = 0 mode the transfer from the base flow is zero because the 
continuity equation requires that u(x, k = 0) = 0. The buoyant interaction with the 
base temperature field and the k = 0 mode accounts €or about 4% of the total 
production in the flow. For the k = 1 mode the situation is reversed, with over 91 YO 
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of the total production coming by interaction with the base flow. The buoyant 
conversion for the k = 1 mode is about 5 % .  In  all modes buoyant production is 
positive, but for modes with k 2 1 kinetic energy is actually transferred from the 
secondary flow into the base flow, in an amount which makes the net production 
negative for these modes. The transfer from these higher modes is less than 1 %  of 
the total production. 

When the total fields are discussed in the thermal variance equation, the only 
production is by the k = 0 mode a t  the side-walls, and by the k = 1 mode. The 
percentages of the total production by the k = 0 and 1 modes are more than 99 % and 
less than 270, respectively. Thermal variance a t  the higher modes comes strictly 
from the nonlinear triad term. When examining the secondary fields, the k = 0 mode 
production is always zero because u(x, k = 0) = 0. The E = 1 mode is the only mode 
producing in the ET spectrum. For the remaining modes the remaining terms are 
actually negative, but their sum is less than 2% of the total production of the 
thermal variance. 

Dissipation, like production, occurs mainly in the first two modes in the total field, 
especially in the E, equation. The k = 0 and 1 modes account for about 99.08% of 
the total dissipation for the E ,  spectrum. These modes are responsible for over 98 YO 
of the E ,  dissipation. The reason for the majority of the dissipation being a t  the low 
end of the spectrum is that the transfer mechanism in a two-dimensional laminar 
flow is too weak to allow either kinetic or thermal variance to be transferred into the 
higher modes at  a sufficient rate for these modes to dissipate a significant amount of 
the energy. Since In E, - - 2pk,  an estimate for a characteristic velocity is v - e-pk 
and the triad term (excluding the contribution of spatial derivatives which vary 
algebraically a t  most with k )  becomes - e-3@k. This means that the transfer 
mechanism drops with increasing k at a faster rate than the kinetic energy. As a 
result, the level of E, and ET is so much higher in the lower modes that most of the 
dissipation must take place there. 

The triad transfer terms in (21) and ( 2 2 )  show that the kth mode interacts with two 
other modes and exchanges energy in the process. When the total energy transfer 
into each mode from interaction with all other modes is summed over the entire 
spectrum, it matches the total energy output (to within lop9 of the quantity), as it 
should, for the triad term only distributes the energy among the modes. A detailed 
budget for the total flow can now be summarized as follows. 

The net transfer via the triad interaction for the mean component of the flow is 
negative. The same net transfers for all other modes are positive. This means that 
energy flows from the mean flow into the fluctuating components. Specifically, all the 
energy leaving the k = 0 mode goes to the k = 1 mode. However, when the mean flow 
interacts with the k > 1 modes, energy is always being transferred from these modes 
back into the mean flow. It is noted that the total amount coming from all the 
k > 1 modes into the k = 0 mode is only 0.16% of the amount transferred from the 
mean flow into the k = 1 mode. 

Modes with k > 1 receive most of their energy by interacting with the k = 1 and 
k -  1 modes. For 2 < k < 7, such interactions result in transfers of amounts which are 
larger than 99.9% of the total transfer into each of these modes. 

An examination of the fractional energy which leaves the Eth mode reveals that  for 
k <4 most of the energy goes into the mean flow, at a rate diminishing with 
increasing k .  The fractional values are given in figure 6, which shows that a large 
portion of the total energy leaving the higher modes is by interaction with the 
k = 2 and 3 modes. I n  interpreting figure 6, i t  is important to recall that the EK 
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FIauRE 6. Amount of energy transferred from the k-mode into other modes via the triad term, 
expressed as a percentage of the total energy outflow via the triad term a t  the k-mode (Pr = 0.71, 
Gr = 8500, a = 2.8). 

spectrum falls exponentially with k. For example, whereas for k = 2 and k = 3 modes 
about 98.9% of their energy transfer via the triad interaction goes back into the 
mean flow, the amount leaving k = 2 is about 375 times the amount transferred out 
of k = 3. 

Results were also obtained for a pure shear flow (Pr = 0) in which the transfer of 
energy from the buoyant field is by the interaction between the mean flow and the 
mean temperature field (i.e. production a t  k = 0 mode only). The t,rends discussed 
here for the Pr = 0.71 case were found to be true for the flow with Pr = 0 as well, 

Another way to look a t  the energetics of the flow is to  plot the horizontal 
distribution of the y-averaged production from both the base flow (gb) and the 
buoyancy field (gT). These are shown in figure 7, together with the dissipation (a). 
Both production mechanisms peak a t  the centre of the cavity. The energy produced 
near the centre is transferred towards the wall where a small part of i t  is drawn into 
the base flow or stored in the buoyancy field. Most of the dissipation takes place right 
next to the wall. 

4.2.2. Oscillatory $ow for a jluid with Pr = 1000 

As has already been mentioned the flow of a fluid with Pr = 1000 is periodic in 
time. The kinetic energy spectra, when the kinetic energy reaches its maximum and 
minimum, are presented in figure 8. Comparison with figure 5 shows that, for this 
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FIGURE 7. Average kinetic energy production and dissipation across the cavity 
(Pr = 0.71, Gr = 8500, a = 2.8). 

periodic flow, more modes participate in the dynamics a t  the low end of the spectrum 
than in the low-Prandtl-number flow, resulting in a non-smooth spectra. The 
base-secondary flow decomposition shows that production a t  Pr = 1000 is almost 
solely determined by conversion from the buoyancy field (typical ratios of buoyant 
production to base flow transfer are lo2 - lo3). As described earlier on physical 
grounds, i t  is the horizontal coexistence of two production peaks in the cavity that 
gives rise to a coherent, large-scale structure at the kinetic energy maximum. As 
expected, the dominant mode in the spectrum is the k = 1 mode which goes through 
the widest swings in its kinetic energy level. The k = 2 mode is almost stationary, and 
the k = 3 mode shows cyclical variations, out of phase with the k = 1 variations. It 
is significant to note that the stream patterns show structure corresponding to 
k = 3 a t  the cycle minima. Thus, whereas for Pr = 0.71 the higher modes serve only to  
distort the mean flow and the k = 1 mode, now the k = 3 mode has a clearer physical 
interpretation. None of the modes above the k = 3 mode participate in any 
significant way in the time evolution of the flow. Therefore the dynamics of the 
velocity field are determined by the first four modes alone. This is not to say that all 
modes above k = 3 could be discarded in a simulation, since doing so would cause 
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FIGURE 8. Spectra of kinetic energy for oil (Pr = 1000, Gr = 375, a = 2.4) 

aliasing errors to significantly contaminate the lower modes. The high end of the 
spectrum shows again an exponential decay which assures that the flow is well 
resolved. 

In  figure 9 the spectra of the temperature variance are shown to change very little 
throughout the cycle. This is consistent with the observation made above about the 
isotherms in figure 3. During a cycle the secondary temperature cells simply drift up 
along the hot side and down along the cold side. The variations a t  1 < k < 4 change 

FIGURE 9. Spectra of thermal variance for oil (Pr = 1000, Gr = 375, a = 2.4). 
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FIGURE 10. Average kinetic energy production and dissipation across the cavity (Pr = 1000, 
Gr = 375, a = 2.4). X = E,,,,; N =  E,,,,. 

the level of the fluctuating thermal variance by a factor of 1.5, which is small 
compared with the cyclical changes of order lo2 in the fluctuating secondary kinetic 
energy spectra. The high end of the thermal spectrum is again exponentially 
decaying. 

The vertically averaged buoyant production and the dissipation of secondary 
kinetic energy are shown in figure 10 as a function of the horizontal distance. 
Production peaks near x = t0 .21.  The maximum base flow velocity occurs at  x = 
f 0.29. Interestingly, the vertically averaged dissipation at the kinetic energy 
maximum peaks not a t  the walls, but in the interior. A t  the minimum of kinetic 
energy the trend is reversed, and the maximum dissipation is at the wall. 

5.  Stability of the secondary flow for Pr = 0.71 
5.1. Formulation and numerical method 

The formulation of the stability problem for the stationary transverse cells follows 
the standard methods of linear stability theory. The Navier-Stokes equations and 
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the thermal energy balance are written in primitive variables using the Boussinesq 
approximation. Each of the primitive variables is then written as a sum : 

(30) 

where subscripts b, s, and p represent the base flow, the secondary flow, and the 
perturbation, respectively. The equations governing the steady two-dimensional 
multicellular flow are next subtracted from the general equations so that, after 
neglecting all terms of order e2, the remaining system of linear equations for the 
perturbations governs the stability of the multicellular flow. The final form of these 

q(x, y, z ,  t ,  = qb(x) + qs(x, y) + Eqp(X, y, z ,  t ) ,  

equations is au av aw 
ax ay a Z  
-+-+- = 0, 

aP + 9 u + G r -  = 0, ax 
aP 

at dx ax aY 

aw aP 
at a2 

[ (dvb 21 -+Gr u -+A +v- + 2 v - T + G r -  = 0, 

-++w+Gr- = 0, 

where the two operators appearing in the equations are defined as 

9’= -V2+Gr 

(33) 

(34) 

(35) 

(37) 

and the subscript p has been dropped. The boundary conditions to be satisfied are 

u = v = w = T = 0 a t  x = -;and$. (38) 

Since the equations are linear and homogeneous, and do not depend explicitly on 
z and t ,  one can assume for the solution an exponential dependency on these two 
independent variables. The resulting system has one additional feature not present 
in the analysis of the stability of the base flow; namely, the equations contain 
coefficients that  are periodic functions of y. This type of equation is handled by the 
Floquet theory (Bender & Orszag 1978) which allows the variables characterizing the 
perturbations to be written as 

q(x, y, z ,  t )  =eidWx, y, 2, t ) ,  (39) 

where q5 is a periodic function of y with the original period of the secondary flow, and 
d is the Floquet exponent. As a result the perturbations can be expanded as 

m 

q(x, y, 2, t )  = $n(x) ei~n~+id~+ib*+~t.  (40) 
n --w 

Substituting the forms given by (40) into the set (31)-(37) leads to an infinite set 
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of differential equations with homogeneous boundary conditions. These equations 
then constitute an eigenvalue problem for u. 

Numerical results for the eigenvalue problem are sensitive to the truncation level 
taken for both x and y .  The Chebyshev collocation method is used for the x- 
dependency. The truncation level in y of the perturbations themselves is of less 
importance if the y-dependency of the secondary flow is adequately resolved. The 
secondary flow was calculated with 17 modes in x and 16 in y .  Of these, 17 modes in 
x and 5 modes in y were used to represent the secondary flow in the stability 
calculations. The perturbations were represented with 17 modes in x and 3 modes in 
y .  The resulting algebraic eigenvalue problem was solved by a complex QR 
algorithm. 

The computational procedure is to first compute a steady nonlinear solution for a 
particular Gr-a combination, and then to test its stability for three-dimensional 
disturbances. Previous results, knowledge of the mechanism operating in a particular 
range of parameters, and interpolation between eigenvalues of sufficiently small real 
parts were all used in reducing the effort required to determine the onset of secondary 
instabilities. In  a restricted Gr-a parameter space 40 stable nonlinear states were 
computed and their linear stability was tested to arrive a t  the results presented in the 
following section. 

As the results are extremely error sensitive, three separate tests were used. First, 
the stability of the base flow was determined by setting the secondary flow variables 
to zero. The eigenvalues so calculated were identical to previous values obtained by 
us and others. 

The computer code was also checked by repeating some of the secondary 
instability calculations of Nagata & Busse (1983) at Pr = 0. This was done for the 
monotone, oscillatory, and Eckhaus instabilities for the parameters quoted by them. 
The tests were performed with the 17 x 5 x 3 mode resolution. For the monotone 
instability, the lower bound for the stability limit is about 8200. At Gr = 8300, 
a = 2.60, d = 1.3, b = 1.55 the eigenvalue with the maximum real part is 
u,,, = (0.77, x lo-'), which is sufficiently close to the value given by Nagata & 
Busse. For the oscillatory instability, the lower bound for the stability is about 8450. 
At Gr = 8500, a = 2.60, d = 0, b = 1.6, we find urnax = (0.16, 14.53) which again is in 
accordance with their results. Finally, the growth rates of the Eckhaus instability for 
the state Gr = 8500, a = 2.60, b = 0 were calculated as functions of d.  This state 
should be stable, with a maximum decay rate a t  d = $a. For this test good agreement 
was again found with the results of Nagata & Busse. 

A third test involved a convergence study to ascertain that the spatial resolution 
is sufficient. Table 1 lists results for two supercritical states with a monotone 
instability. The first case is a t  G,r = 10000 and Pr = 0.71 and is strongly unstable. 
Results show that for Nu = 5 ,  where N, refers to  the number of Fourier modes in the 
representation of the secondary flow, there is relatively small fractioiial change when 
N, is changed from 17 to 9. The results do not change much when Ny = 3, but when 
the mean flow alone (N, = 1) is used to  approximate the secondary flow, the results 
are seriously in error, with the critical eigenvalue not even having the correct sign. 
This test was repeated for Gr = 8500, which is near the onset of the monotone 
instability. These results are also given in table 1, and show that Nu = 5 and N, > 13 
give a reasonably accurate determination of the critical eigenvalue. 

From this comparison it is obvious that, a t  least for our case, using the mean flow 
alone is completely unacceptable for the computations of secondary instabilities, 
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h i %  

17 5 
13 5 
9 5 

17 3 
1 3 3 
9 3 

17 1 

17 5 
15 5 
13 5 
1 1  5 
9 5 
7 5 

17 3 
13 3 
9 3 

17 1 

fir 

12.48 
12.47 
12.03 
12.78 
12.76 
12.28 

State I 

- 19.04 
State I1 

0.197 4 
0.1969 
0.188 1 
0.08495 
0.1368 
8.9250 
0.310 1 
0.300 7 
0.234 1 

-22.220 

-0.7351 x 
-0.7197 x 
-0.150 x 
-0.3345 x 
-0.5213 x lo-' 

-0.2875 x lo-' 
-0.2129 x lo-' 

-0.1470 x 

-0.1123 x 
-0.8441 x 

-0.9272 x 
-0.1061 x 
-0.2648 x 
-0.1649 x 
-0.1275 x 
-0.1045 x 
-0.7212 x 

TABLE 1 .  Convergence study of the secondary stability code for air. State I: Gr = 10000, a = 2.81, 
d = 1.3, b = 1.6; State 11: Gr = 8500, a = 2.81, d = 1.3, b = 1.6 

even if the nonlinear state is well-resolved. Whereas the numerical appeal to do so is 
great (as one may use a modified base flow stability code alone), the results do not 
justify such an approach. Studies with Nu = 3 (or Ng = 2 when the mean perturbation 
is zero) have been reported by Herbert (1983) and Orszag & Patera (1983). In the 
latter study the secondary stability results have been compared to direct simulations 
of the three-dimensional equations using a nonlinear initial-value code. This 
approach as noted above is a good way to cross-check the numerical results. 

5.2. Secondary stability results 

I n  figure 11 the results of the investigation of the secondary instabilities of the 
stable transverse rolls are summarized. Grashof number was varied in the range 
8037 < Gr < 10000, the lower value being the critical Grashof number from 
linear stability theory of the base flow. States with wavenumbers in the range 
1.9 < a c 3.4 were examined, the critical wavenumber of the base flow instabilities 
being a = 2.81. Shown in the figure are curves from three instability mechanisms 
which constrain the domain of the stable cells. These are two types of the monotone 
instabilities and the Eckhaus instability. I n  addition, the stability curve for an 
oscillatory mode is shown, even though it plays no direct role in the loss of stability 
of the secondary cells. 

5.2.1. The Eckhaus instability 
The Eckhaus instability operates as a two-dimensional mechanism by limiting the 

lower and upper stable wavenumbers (see Drazin & Reid 1981, pp. 416-420). Thus 
at any given Grashof number, the Eckhaus instability curve is contained within the 
linear stability curve. From figure 11 it  is seen that, in our case, the Eckhaus curve 
is more non-symmetric about the critical wavenumber, with the longer waves being 
more stable, than in the study by Nagata & Busse (1983). This observation suggests 
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FIGURE 1 1 .  Stability map of the multicellular flow for air (Pr = 0.71). The shaded area 
represents the domain of stable two-dimensional cells. 

that the most stable transverse cells in a vertical cavity have a longer wavelength 
than those at the critical state. The tendency towards longer wavelengths is 
consistent with weakly nonlinear theory and has been reported by Lee & Korpela 
(1983) in a cavity of finite, but large, aspect ratio. The right branch of the Eckhaus 
curve rises steeply and shows that cells with a > 2.95 are unstable. 

The growth rate of the Eckhaus instability as a function of d and for various values 
of a is shown in figure 12. The curves are similar to those calculated by Nagata 
& Busse for Pr = 0. The abscissa in figure 12 is normalized by a, so easy comparison 
between different values of a is possible. A characteristic property of the curves is a 
minimum at d/a x $, showing that the principal parametric subharmonic mode is 
not the preferred one. This is in accordance with the findings of Nagata & Busse who 
mention that the examination of only subharmonic modes by Pierrehumbert & 
Widnall (1982) is insufficient. It is also seen from the curves that there exists a well- 
defined trend of preferred wavenumber ranges that are first amplified. The first 
unstable subharmonic for a to  the right of the Eckhaus curve starts with values of 
d/a x 1 and diminishes away from the Eckhaus curve. Conversely, for values of a to 
the left of the curve, the first unstable subharmonic has a very small wavenumber. 
Nagata & Busse found relatively symmetrical results about d / a  = $. The lack of 
symmetry in figure 12 must be attributed to the departure from the Pr = 0 limit. The 
usual identification of the modes of instability as either ‘shear ’ or ‘buoyancy ’ driven 
which prevails for the base flow instability case does not neccessarily hold true for 
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FIQURE 12. Growth rates of Eckhaus instability for several values of a (Pr = 0.71, Gr = 8500). 

the secondary instability. Small and intricate differences between seemingly similar 
parameters may lead to different dominating instability mechanisms. Therefore, it  is 
not surprising to find differences between our observations and those of Nagata & 
Busse, including those that show up for the Eckhaus instability. 

5.2.2. The monotone instabilities 

The two modes of monotone instability shown in figure 11, are designated as 
monotone A and B modes. The monotone A instability constraints the domain of the 
stable vortices from above, and is apparently the same monotone instability as found 
by Nagata & Busse. The resulting flow is three-dimensional because both b and d 
have finite values for the critical mode. For all the states considered the value of d 
was slightly less or nearly equal to &. The deviation from d = $a may lie in the 
lack of perfect periodicity of the results. The departure from perfect periodicity is 
likely to have been caused by slightly inadequate y-resolution of the secondary flow 
representation. In the limit of an infinite number of modes the flow is expected to be 
perfectly periodic in y. Lack of perfect periodicity was also noted by Nagata & Busse, 
whose numerical methods are more efficient for the inclusion of more Fourier modes 
in the secondary flow. The computed values of d vary at most by about 7 %  from 
d =$a. The value of b a t  the critical states does not vary greatly with a, being 
about 1.6 for the values of a tested. Nagata & Busse obtained for Pr = 0 a value 
between 1.5 and 1.6 when a = 2.6. Thus the monotone instability leads to a three- 
dimensional tertiary flow with twice the wavelength of the secondary flow, and it was 
discovered by Nagata & Busse that the flow is one in which pairing of adjacent cells 
takes place. 

The stability curve for the monotone B mode is also shown in figure 11. To the left 
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of this curve the secondary flow is unstable; to the right it is stable. The curve 
originates from the vicinity of the critical state of the base flow (Gr, = 8037, a, = 
2.81) and limits the minimum allowable stable wavenumber to about a = 2.68 at 
Gr = 8550. A characteristic property of monotone B instability is that it exhibits, as 
a function of a, a rather wide region of growth rates of nearly the same magnitude. 
Near the stability curve both b and d are very small. They assume values of at most 
d = 0.4 and 6 = 0.6 for states further away from the stability curve, in the range of 
parameters 'tested (up to Gr = 9000). Thus the characteristic wavelength associated 
with the three-dimensional monotone B instability is much larger than the original 
secondary flow wa-velength. 

The monotone B instability was found to resemble in many ways the skewed 
varicose instability in Rayleigh-Be'nard convection. The skewed varicose instability 
for Rayleigh-Bdnard convection operates at the low to moderate Prandtl-number 
range only. At  the limit of stability, the values of both d and b vanish, and therefore 
the skewed varicose instability goes over to a translational instability of neutral 
type. At finite values of b and d,  the skewed varicose instability distorts the rolls in 
the spanwise direction such that periodic thinning and thickening of the cells is 
noticeable, giving the pattern a skewed appearance. 

Owing to the different base flow in the case considered here, the appearance of the 
cellular structure now may be quite different from in Rayleigh-Be'nard convection. 
In addition, whereas the skewed varicose instability is the most important 
mechanism constraining the upper limit of the wavenumber range for Rayleigh- 
Be'nard convection in the low to moderate Prandtl-number range, the results 
shown here produce exactly the opposite effect. In figure 11 the monotone B 
instability is seen to constrain the lower limit of the stable wavenumbers. This 
difference is not unexpected, because transverse cells may lead to a different 
dependency on the primary wavenumber than the longitudinal rolls in Rayleigh- 
B6nard flow. The skewed varicose mechanism is the only mode of instability 
for Rayleigh-Bdnard convection known to both change the original cell wavelength 
and to introduce a periodic pattern in the y-direction. This feature is present in the 
monotone B instability. 

One might wonder why the monotone A or B instabilities are not generally observed 
in laboratory experiments. There may be several reasons for this. First, most flow 
visualization studies of the transverse convection cells involve using a light sheet 
which cuts through a vertical (x,y)-plane, the sidewalls being made of highly, 
conducting material such as copper or aluminium to keep their temperatures 
constant. Thus the spanwise structure is impossible to see in such an experiment. The 
second reason concerns the finite aspect ratios in laboratory experiments. The finite 
aspect ratio may alter the flow through the imposed thermal stratification, as well as 
by introducing additional geometrical constraints. The thermal stratification both 
delays the appearance of the multicellular flow and may have some effects on the 
growth of the finite-amplitude flow. Also, for monotone B instability it is noted that 
the values of b and d of the developing tertiary motions are very small; they are 
vanishingly small near its stability curve. This property implies very large 
wavelengths in both the vertical and spanwise directions. It is noted that since the 
monotone A instability constrains the domain of the stable cells from above, it is 
most likely to be seen as the Grashof number is increased. To resolve, say, 20 cells 
in this case, a cavity with an aspect ratio of about 100 is sufficient. 
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FIMJRE 13. Real (+-) and imaginary (- - - - )  parts of the critical eigenvalue at several Grashof 
numbers for the oscillatory instability (Pr = 0.71, a = 2.81). 

5.2.3. The oscillatory instability 
The oscillatory instability shown by the short dashed line in figure 11 has the same 

features as that found by Nagata & Busse for Pr = 0. The maximum growth rate 
corresponds to d = 0, b x 1.4-1.6. Figure 13 shows the real and imaginary parts of 
the oscillatory instability for several Grashof numbers at a = 2.81. The critical 
eigenvalue always appears as a pair of complex conjugates. This result is different 
from the analyses of both Nagata & Busse (1983) and Pierrehumbert & Widnall 
(1927). Nagata & Busse found two real eigenvalues which join to form a pair of 
complex conjugates, and Pierrehumbert & Widnall found two imaginary eigenvalues 
which join to form a pair of complex conjugates as b increases. However, since their 
study was limited to the inviscid case only, the real parts of their eigenvalues are 
identically zero., which complicates the analysis of the b-dependency. Nagata & Busse 
show the total stream pattern for the Pr = 0 case. From this it can be concluded that 
when the flow is viewed in the (x, y)-plane, the cells are seen to move periodically up 
and down. In the (y,z)-plane the flow appears as a pair of travelling waves which 
bend the rolls periodically. 

6. Discussion 
The topics investigated in this study were chosen with the aim of acquiring a 

general understanding of the flow characteristics and stability of the multicellular 
flow of natural convection in a vertical cavity. 

An examination of the flow from both the, traditionally separate, spectral and 
physical views is central to the understanding of the overall transfer processes. 
Physical description of the flow clearly shows the interdependency between the 
temperature and flow fields. In a time-dependent high-Prandtl-number flow, 
the causality between the two fields becomes apparent when quantities such as the 
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secondary fields and the buoyant production are examined. The results here suggest 
that temperature fluctuations originate near the ' critical layers ' and are convected 
along the two vertical sides of the cavity. These fluctuations directly contribute to 
the dominant buoyant production of kinetic energy during one part of the cycle. The 
data also suggest that there are small changes in the temperature field during the 
cycle, but that large effects are noted for the secondary velocity fields. The process 
can be likened to an oscillator with damping, in which the forcing function is altered 
by the motion such a way as to sustain a stable oscillation. It could not be compared, 
however, to an oscillator in which energy is simply being transferred between the 
kinetic and the potential energy fields, for dissipation results in a large reduction in 
the kinetic energy in one part of the cycle which is being replenished during the other 
half. 

A spectral examination of these flows revealed several additional aspects. The 
kinetic energy and thermal variance spectra were found to be smooth and the 
logarithms of either quantity varied linearly with the wavenumber. This behaviour 
resembles the one-dimensional kinetic energy spectrum of Taylor-Couette flow, 
which is purely hydrodynamic. Therefore for a relatively low-Pr fluid (air), the 
buoyant production effects were still small in comparison with the triad interaction 
term in supplying the kinetic energy of the disturbances. The same spectra for oil 
show that the oscillations in the flow are restricted to only the first four modes, and 
that the role of the rest of the spectra is simply to dissipate the kinetic energy and 
thermal variance. 

The secondary stability map produced for air in a vertical slot shows a rather small 
region of stable cells. This region is confined by the Eckhaus and monotone 
instabilities as in the flow of a fluid with Pr = 0, and another instability resembling 
(except, perhaps, for its physical appearance) the skew varicose instability in 
Rayleigh-Be'nard convection. The two-dimensional cells in air are stable only for 
Gr < 8560, a limit that must be observed in two-dimensional simulations of the flow. 
There seems to be little reason for computing two-dimensional flows with higher and 
higher Grashof numbers. 
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